問題文全文
次の定積分の値を求めなさい.
(a) \(\displaystyle \int_0^{\frac{\pi}{3}}\sin^2x\cos^2xdx\)
(b) \(\displaystyle \int_1^4\frac{\log x}{\sqrt{x}}dx\)
ただし\(,\) \(\log x\) は \(x\) の自然対数である.
(a) の解答
\begin{align} \int_0^{\frac{\pi}{3}}\sin^2x\cos^2xdx=\frac{1}{4}\int_0^{\frac{\pi}{3}}\sin^22xdx\end{align}
\begin{align}=\frac{1}{8}\int_0^{\frac{\pi}{3}}(1-\cos{4x})dx=\frac{1}{8}\biggl[x-\frac{1}{4}\sin{4x}\biggr]_0^{\frac{\pi}{3}}\end{align}
\begin{align}=\frac{1}{8}\left\{\frac{\pi}{3}-\frac{1}{4}\cdot \left(-\frac{\sqrt{3}}{2}\right)\right\}=\frac{1}{8}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{8}\right)~~~~\cdots \fbox{答}\end{align}
quandle
次数が高い三角関数は
①半角の公式 ②2倍角の公式 ③積和の公式
のいずれかを使うことで \(1\) 次まで次数を落とすことができます.
(b) の解答(微分接触型とみる)
\begin{align}\int_1^4\frac{\log x}{\sqrt{x}}dx=4\int_1^4\frac{1}{2\sqrt{x}}\cdot \log{\sqrt{x}}dx\end{align}
\begin{align}=4\int_1^4(\sqrt{x})^{\prime}\log{\sqrt{x}}dx=4\biggl[\sqrt{x}\log{\sqrt{x}}-\sqrt{x}\biggr]_1^4\end{align}
\begin{align}=4(2\log 2-2+1)=8\log 2-4~~~~\cdots \fbox{答}\end{align}
(b) の別解(部分積分法の利用)※赤本の解答
\begin{align}\int_1^4\frac{\log x}{\sqrt{x}}=\biggr[2\sqrt{x}\log x\biggr]_1^4-\int_1^42\sqrt{x}\cdot \frac{1}{x}dx\end{align}
\begin{align}=4\log 4-\int_1^4\frac{2}{\sqrt{2}}dx=8\log 2-\biggl[4\sqrt{x}\biggr]_1^4\end{align}
\begin{align}=8\log 2-(8-4)=8\log 2-4~~~~\cdots \fbox{答}\end{align}
コメント